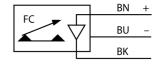
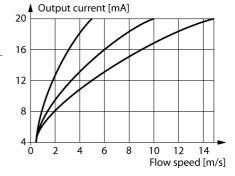

TURCK

Flow sensor Immersion sensor with integrated processor FCS-K20-LIX



Type code	FCS-K20-LIX	
Ident no.	6870703	
Air operating range	0.515 m/s	
Setting time	typ. 2 s (120 s)	
Temperature gradient	≤ 200 K/min	
Medium temperature	- 2070 °C	
Operating voltage	2126VDC	
Output function	analog output	
Short-circuit protection	yes	
Reverse polarity protection	yes	
Current output	420mA	
Load	\leq 500 Ω	
Protection class	IP67	
Housing material	plastic, PBT	
Sensor material	plastic, PBT-GF30-V0	
Connection	cable	
Cable length	2 m	
Cable cross section	3 x 0.5 mm ²	
Pressure resistance	1 bar	
Process connection	PVC, flange	
Power on display	LED, green	


- Flow sensor for gaseous media
- Calorimetric principle
- Adjustment via potentiometer
- Mounting flange, plastic, included
- LED "power on" indication
- Plastic sensor housing
- 3-wire DC, 21...26 VDC
- 4...20 mA analog output

Wiring diagram

Functional principle

Our insertion - flow sensors operate on the principle of thermodynamics. The measuring probe is heated by several °C as against the flow medium. When fluid moves along the probe, the heat generated in the probe is dissipated. The resulting temperature is measured and compared to the medium temperature. The flow status of every medium can be derived from the evaluated temperature difference. Thus TURCK's wear-free flow sensors reliably monitor the flow of gaseous and liquid media.

