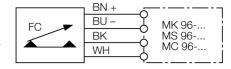

Flow sensor Immersion sensor without integrated processor FCS-GL1/2A2-NA/A



Type code Ident no.	FCS-GL1/2A2-NA/A 6870409	
Air operating range	0.530 m/s	
Stand-by time	1090 s	
Switch-on time	230 s	
Switch-off time	530 s	
Temperature jump, response time	max. 60 s	
Temperature gradient	≤ 20 K/min	
Medium temperature	- 2080 °C	
Protection class	IP68	
Housing material	stainless steel, V2A (1.4305)	
Sensor material	stainless steel, AISI 303	
Max. tightening torque housing nut	100 Nm	
Connection	PVC cable	
Cable length	2 m	
Cable cross section	4 x 0.5 mm ²	
Pressure resistance	30 bar	
Process connection	G ½" long	

- Flow sensor for gaseous media
- Calorimetric principle
- Adjustment via potentiometer on processor
- Status indicated via LED chain on signal processor
- Cable device
- 4-wire connection to the processor

Wiring diagram

Functional principle

Our insertion - flow sensors operate on the principle of thermodynamics. The measuring probe is heated by several °C as against the flow medium. When fluid moves along the probe, the heat generated in the probe is dissipated. The resulting temperature is measured and compared to the medium temperature. The flow status of every medium can be derived from the evaluated temperature difference. Thus TURCK's wear-free flow sensors reliably monitor the flow of gaseous and liquid media.