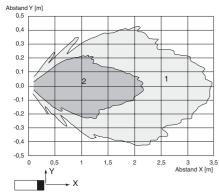


Bestellbezeichnung

UB2000-F54-E4-V15


Einkopf-System

Merkmale

- Schaltausgang
- 5 verschiedene Ausgangsfunktionen einstellbar
- Lerneingang
- Synchronisationsmöglichkeiten
- Deaktivierungsmöglichkeit
- Temperaturkompensation

Diagramme

Charakteristische Ansprechkurve

Kurve 1: ebene Platte 100 mm x 100 mm Kurve 2: Rundstab, Ø 25 mm

Technische Daten

Aligemeine Daten	
Erfassungsbereich	80 2000 mm
Einstellbereich	100 2000 mm
Blindzone	0 80 mm
Normmessplatte	100 mm x 100 mm
Wandlerfrequenz	ca. 175 kHz
Ansprechverzug	≤ 150 ms

Anzeigen/Bedienelemente

permanent grün: Betriebsanzeige LED grün grün blinkend: Lernfunktion LED gelb Schaltzustandsanzeige

blinkend: Lernfunktion Objekt erkannt LED rot blinkend:

Normalbetrieb: Störung

Lernfunktion: Objekt nicht erkannt

permanent: Lernfunktion, Objekt unsicher

Elektrische Daten 10 ... 30 V DC , Welligkeit 10 %SS Betriebsspannung UB Leerlaufstrom I₀ ≤ 55 mA

Eingang/Ausgang

1 Synchroneingang 0-Pegel: -UB...+1 V Synchronisation

1-Pegel: +4 V...+UB Eingangsimpedanz: > 12 k Ω Synchronisationsimpuls: 0,1 ... 28 ms

Synchronisationsfrequenz

Gleichtaktbetrieb < 33 Hz

Multiplexbetrieb ≤33 / n Hz, n = Anzahl der Sensoren

Eingang Eingangstyp

1 Lerneingang.

Schaltpunkt A1: -UB ... +1 V, Schaltpunkt A2: +4 V ... +UB

Eingangsimpedanz: > 4,7 k Ω , Lernimpuls: \geq 1 s

Ausgang

1 Schaltausgang E4, npn, Schließer/Öffner Ausgangstyp 200 mA, kurzschluss-/überlastfest Bemessungsbetriebsstrom I,

≤3 V Spannungsfall U_d Reproduzierbarkeit \leq 1 % vom Endwert

Schaltfrequenz f max. 3 Hz

Abstandshysterese H ≤ 1 % des eingestellten Schaltabstandes

+ 1.5 % yom Endwert Temperatureinfluss

Umgebungsbedingungen

Umgebungstemperatur -25 ... 70 °C (-13 ... 158 °F) Lagertemperatur -40 ... 85 °C (-40 ... 185 °F)

Mechanische Daten

Normenkonformität

Anschlussart Gerätestecker M12 x 1, 5-polig

Schutzart **IP65**

Material

Gehäuse

Wandler Epoxidharz/Glashohlkugelgemisch; Schaum Polyurethan

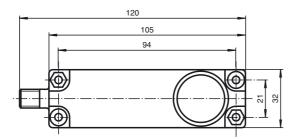
Masse 100 g

Normen- und Richtlinienkonformität

Normen EN 60947-5-2:2007 + A1:2012 IEC 60947-5-2:2007 + A1:2012

Zulassungen und Zertifikate

UL-Zulassung cULus Listed, General Purpose CSA-Zulassung cCSAus Listed, General Purpose

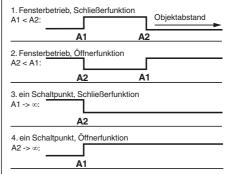

CCC-Zulassung Produkte, deren max. Betriebsspannung ≤36 V ist, sind nicht

zulassungspflichtig und daher nicht mit einer CCC-

Kennzeichnung versehen.

www.pepperl-fuchs.com

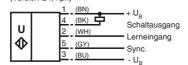
Abmessungen



Bohrung und Senkung für Schrauben/Sechskant M4

Zusätzliche Informationen

Programmierung der Schaltausgänge



5. A1 -> ∞ , A2 -> ∞ : Detektion auf Objektanwesenheit

Objekt erkannt: Schaltausgang geschlossen kein Objekt erkannt: Schaltausgang offen

Elektrischer Anschluss

Normsymbol/Anschluss: (Version E4, npn)

Adernfarben gemäß EN 60947-5-2.

Pinout

Adernfarben gemäß EN 60947-5-2

1	BN	(braun)
2	WH	(weiß)
3	BU	(blau)
4	BK	(schwarz)
5	GY	(grau)

Zubehör

UB-PROG2

Programmiergerät

V15-G-2M-PVC

Kabeldose, M12, 5-polig, PVC-Kabel

Synchronisation

Singapur: +65 6779 9091 fa-info@sg.pepperl-fuchs.com

Zur Unterdrückung gegenseitiger Beeinflussung verfügt der Sensor über einen Synchronisationsanschluss. Ist dieser unbeschaltet, arbeitet der Sensor mit einer intern erzeugten Taktrate. Eine Synchronisation mehrerer Sensoren kann auf folgende Arten erreicht werden.

Fremdsynchronisation

Der Sensor kann durch äußeres Anlegen einer Rechteckspannung synchronisiert werden. Ein Synchronisationsimpuls am Synchronisationseingang führt zur Durchführung eines Messzyklus. Die Impulsbreite muss größer 100 µs sein. Der Messzyklus wird mit der fallenden Flanke gestartet. Ein Low Pegel > 1 s oder ein offener Synchronisationseingang führt zum Normalbetrieb des Sensors. Ein High Pegel am Synchronisationseingang deaktiviert den Sensor.

Zwei Betriebsarten sind möglich

- 1. Mehrere Sensoren werden mit dem selben Synchronisationssignal angesteuert. Die Sensoren arbeiten im Gleichtakt.
- 2. Die Synchronisationsimpulse werden zyklisch nur jeweils einem Sensor zugeführt. Die Sensoren arbeiten im Multiplexbetrieb.

Selbstsynchronisation

Die Synchronisationsanschlüsse von bis zu 5 Sensoren mit der Möglichkeit der Selbstsynchronisation werden miteinander verbunden. Diese Sensoren arbeiten nach dem Einschalten der Betriebsspannung im Multiplexbetrieb. Der Ansprechverzug erhöht sich entsprechend der Anzahl der zu synchronisierenden Sensoren. Während des Einlernens kann nicht synchronisiert werden und umgekehrt. Zum Einlernen der Schaltpunkte müssen die Sensoren unsynchronisiert betrieben werden.

Hinweis

Wird die Möglichkeit zur Synchronisation nicht genutzt, so ist der Synchronisationseingang mit Masse (0V) zu verbinden oder der Sensor mit einem V1-Anschlusskabel (4-polig) zu betreiben.

Einstellen der Schaltpunkte

Der Ultraschallsensor verfügt über einen Schaltausgang mit zwei einlernbaren Schaltpunkten. Diese werden durch Anlegen der Versorgungsspannung -U_B bzw. +U_B an den Lerneingang eingestellt. Die Versorgungsspannung muss mindestens 1 s am Lerneingang anliegen. Während des Einlernvorgangs wird mit den LEDs angezeigt, ob der Sensor das Target erkannt hat. Mit -U_B wird der Schaltpunkt A1 und mit +U_B der Schaltpunkt A2 eingelernt.

Es sind fünf verschiedene Ausgangsfunktionen einstellbar

- 1. Fensterbetrieb, Schließerfunktion
- 2. Fensterbetrieb, Öffnerfunktion
- 3. ein Schaltpunkt, Schließerfunktion
- 4. ein Schaltpunkt, Öffnerfunktion
- 5. Detektion auf Objektanwesenheit

Einlernen Fensterbetrieb, Schließerfunktion

- Target auf nahen Schaltpunkt stellen
- Schaltpunkt A1 mit -U_B einlernen
- Target auf fernen Schaltpunkt stellen
- Schaltpunkt A2 mit +UB einlernen

Einlernen Fensterbetrieb, Öffnerfunktion

- Target auf nahen Schaltpunkt stellen
- Schaltpunkt A2 mit +U_B einlernen
- Target auf fernen Schaltpunkt stellen
- Schaltpunkt A1 mit -U_B einlernen

Einlernen ein Schaltpunkt, Schließerfunktion

- Target auf nahen Schaltpunkt stellen
- Schaltpunkt A2 mit +U_B einlernen
- Sensor mit Handfläche abdecken oder alle Objekte aus dem Erfassungsbereich des Sensors entfernen
- Schaltpunkt A1 mit -U_B einlernen

Einlernen ein Schaltpunkt, Öffnerfunktion

- Target auf nahen Schaltpunkt stellen
- Schaltpunkt A1 mit -U_B einlernen
- Sensor mit Handfläche abdecken oder alle Objekte aus dem Erfassungsbereich des Sensors entfernen
- Schaltpunkt A2 mit +UB einlernen

Einlernen Detektion auf Objektanwesenheit

- Sensor mit Handfläche abdecken oder alle Objekte aus dem Erfassungsbereich des Sensors entfernen
- Schaltpunkt A1 mit -U_B einlernen
- Schaltpunkt A2 mit +UR einlernen

Voreinstellung der Schaltpunkte

A1 = Nahbereich, A2 = Nennabstand

LED-Anzeige

108161_ger.xml

Anzeigen in Abhängigkeit des Betriebszustandes	LED rot	LED gelb	LED grün
Schaltpunkt einlernen:			
Objekt erkannt	aus	blinkt	blinkt
kein Objekt erkannt	blinkt	aus	blinkt
Objekt unsicher (Einlernen ungültig)	ein	aus	blinkt
Normalbetrieb	aus	Schaltzu-	ein
		stand	
Störung	blinkt	letzter	aus
		Zustand	