Product data sheet
 Characteristics
 ATV61EXC2C31N4
 enclosed variable speed drive ATV61 Plus 310 kW - 400V - IP23

Range of product	Altivar 61 Plus
Product or component type	Variable speed drive
Device short name	ATV61
Product destination	Asynchronous motors Synchronous motors
Product specific application	Pumping and ventilation machine
Assembly style	In floor-standing enclosure compact version
Product composition	A line choke A switch and fast-acting fuses An IP65 remote mounting kit for graphic display terminal A wired ready-assembled Sarel Spacial 6000 enclosure Terminals/Bars for motor connection ATV61HC31N4D standard drive IP00
EMC filter	Integrated
Network number of phases	3 phases
Rated supply voltage	380... 415 V (+/-10 \%)
Supply voltage limits	342... 457 V
Supply frequency	$50 . . .60 \mathrm{~Hz}(-5 . . .5$ \%)
Network frequency limits	47.5... 63 Hz
Motor power kW	315 kW, 3 phases at 380... 415 V
Line current	527 A for 400 V 3 phases / 315 kW
IP degree of protection	IP23

Complementary	
Apparent power	365 kVA for 400 V , 3 phases 315 kW
Prospective line Isc	100 kA with external fuses
Continuous output current	616 A at $2.5 \mathrm{kHz}, 400 \mathrm{~V} 3$ phases
Maximum transient current	739 A for $60 \mathrm{~s}, 3$ phases
Speed drive output frequency	0.1.. 500 Hz
Nominal switching frequency	2.5 kHz
Switching frequency	$2.5 . .8 \mathrm{kHz}$ with derating factor $2 . . .8 \mathrm{kHz}$ adjustable
Speed range	1... 100 in open-loop mode, without speed feedback
Speed accuracy	+/-10 \% of nominal slip for 0.2 Tn to Tn torque variation without speed feedback
Torque accuracy	+/- 15% in open-loop mode, without speed feedback
Transient overtorque	135 \% of nominal motor torque for 2 s 120 \% of nominal motor torque for 60 s
Braking torque	30 \% without braking resistor <= 125 \% with braking resistor
Asynchronous motor control profile	Energy saving ratio Voltage/Frequency ratio (2 or 5 points) Flux vector control without sensor, standard
Synchronous motor control profile	Vector control without sensor, standard
Regulation loop	Adjustable PI regulator

Motor slip compensation	Adjustable Automatic whatever the load Can be suppressed Not available in voltage/frequency ratio (2 or 5 points)
Overvoltage category	Class 3 conforming to EN 50178
Local signalling	LCD display unit - operation function, status and configuration - mounted in the front door
Output voltage	<= power supply voltage
Isolation	Between power and control terminals
Type of cable for external connection	IEC cable at $40{ }^{\circ} \mathrm{C}$, copper $70{ }^{\circ} \mathrm{C} / \mathrm{PVC}$
Electrical connection	Terminal M12-3x $185 \mathrm{~mm}^{2}$ (L1/R, L2/S, L3/T) entry from the bottom Terminal M12-4×240 mm² (U/T1, V/T2, W/T3) entry from the bottom Terminal - $2.5 \mathrm{~mm}^{2}$ / AWG 14 (Al1-/Al1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR) entry from the bottom
Motor recommanded cable cross section	$3(3 \times 150) \mathrm{mm}^{2}$
Short circuit protection	800 A fuse protection (gl fuse) on power supply upstream
Supply	Internal supply : 24 V DC ($21 \ldots 27 \mathrm{~V}$), $0 . . .100 \mathrm{~mA}$ Internal supply for reference potentiometer : 10 V DC ($10 . . .11 \mathrm{~V}$), $0 . . .10 \mathrm{~mA}$ External supply : 24 V DC (19... 30 V), $1 \mathrm{~A}, 30 \mathrm{~W}$
Analogue input number	2
Analogue input type	Software-configurable current : (AI2) $0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}-250$ Ohm - sampling time: $1.5 . . .2 .5 \mathrm{~ms}$ - resolution: 11 bits Bipolar differential voltage : (Al1-/Al1+) +/-10 V DC - 24 V max - sampling time: $1.5 . . .2 .5 \mathrm{~ms}$ - resolution: 11 bits + sign Software-configurable voltage : (AI2) $0 . . .10 \mathrm{~V}$ DC - 24 V max - 30 kOhm - sampling time: $1.5 \ldots 2.5 \mathrm{~ms}$ - resolution: 11 bits
Analogue output number	1
Analogue output type	Software-configurable current : (AO1) $0 . . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}-500$ Ohm - sampling time: $1.5 \ldots . .2 .5 \mathrm{~ms}$ - resolution: 10 bits Software-configurable voltage : (AO1) $0 . . .10 \mathrm{~V}$ DC - 470 Ohm - sampling time: $1.5 \ldots 2.5 \mathrm{~ms}$ - resolution: 10 bits
Discrete output number	2
Discrete output type	Configurable relay logic : (R2A, R2B) NO - 6.5 ... $7.5 \mathrm{~ms}-100000$ cycles Configurable relay logic : (R1A, R1B, R1C) NO/NC - 6.5 ... $7.5 \mathrm{~ms}-100000$ cycles
Minimum switching current	3 mA at 24 V DC (configurable relay logic)
Maximum switching current	2 A at $30 \mathrm{~V} D C$ on inductive load $-\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ (configurable relay logic) 2 A at 250 V AC on inductive load $-\cos \mathrm{phi}=0.4$ (configurable relay logic) 5 A at 30 V DC on resistive load $-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$ (configurable relay logic) 5 A at 250 V AC on resistive load $-\cos$ phi = 1 (configurable relay logic)
Discrete input number	7
Discrete input type	Safety input (PWR) 24 V DC (<= 30 V) -1.5 kOhm Switch-configurable (LI6) 24 V DC (<= 30 V), with level 1 PLC - 1.5 kOhm - sampling time: 1.5 ... 2.5 ms Programmable (LI1...LI5) 24 V DC (<= 30 V), with level 1 PLC - 3.5 kOhm - sampling time: $1.5 . . .2 .5 \mathrm{~ms}$
Discrete input logic	$\begin{aligned} & \text { Positive logic (source) (PWR), } 0 \ldots 2 \mathrm{~V} \text { (state 0), } 17 \ldots 30 \mathrm{~V} \text { (state } 1) \\ & \text { Negative logic (sink) (LII ...LI6), } 16 \ldots 30 \mathrm{~V} \text { (state 0), } 0 \ldots 10 \mathrm{~V} \text { (state 1) } \\ & \text { Positive logic (source) (LI1...LI6), } 0 \ldots 5 \mathrm{~V} \text { (state 0), } 11 \ldots . .30 \mathrm{~V} \text { (state 1) } \end{aligned}$
Acceleration and deceleration ramps	Linear adjustable separately from 0.01 to 9000 s S, U or customized
Braking to standstill	By DC injection
Protection type	Thermal protection for motor Power removal for motor Motor phase break for motor Thermal protection for drive Short-circuit between motor phases for drive Power removal for drive Overvoltages on the DC bus for drive Overheating protection for drive Overcurrent between output phases and earth for drive Line supply undervoltage for drive Line supply overvoltage for drive Input phase breaks for drive Break on the control circuit for drive Against input phase loss for drive Against exceeding limit speed for drive
Dielectric strength	5092 V DC between control and power terminals 3535 V DC between earth and power terminals
Insulation resistance	> 1 mOhm at 500 V DC for 1 minute to earth

Frequency resolution	0.1 Hz for display unit $0.024 / 50 \mathrm{~Hz}$ for analog input
Communication port protocol	CANopen Modbus
Type of connector	Male SUB-D 9 on RJ45 for CANopen 1 RJ45 for Modbus on terminal 1 RJ45 for Modbus on front face
Physical interface	2-wire RS 485 for Modbus
Transmission frame	RTU for Modbus
Transmission rate	$20 \mathrm{kbps}, 50 \mathrm{kbps}, 125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}, 1 \mathrm{Mbps}$ for CANopen 9600 bps, 19200 bps for Modbus on front face $4800 \mathrm{bps}, 9600 \mathrm{bps}, 19200 \mathrm{bps}, 38.4 \mathrm{Kbps}$ for Modbus on terminal
Data format	8 bits, odd even or no configurable parity for Modbus on terminal 8 bits, 1 stop, even parity for Modbus on front face
Type of polarization	No impedance for Modbus
Number of addresses	1... 247 for Modbus 1... 127 for CANopen
Method of access	Slave for CANopen
Function available	Isolated amplifier for control circuit Adaptor for 115 V logic inputs for control circuit Control terminals for control circuit External 24 V DC supply terminals for power circuit Relay output C/O for control circuit Braking unit for power circuit Enclosure plinth for power circuit Cable entry via the top for power circuit Motor choke for power circuit Enclosure heating for power circuit Ammeter for power circuit 12-pulse supply for power circuit Line contactor for power circuit Door handle for main switch for power circuit Voltmeter for power circuit External motor fan for power circuit Motor heating for power circuit Key switch (local/remote) for power circuit Enclosure lighting for power circuit Buffer voltage 24 V DC power supply for power circuit External 230 V supply terminals for power circuit Design for IT networks for power circuit Insulation monitoring for power circuit Pt100 relay for power circuit PTC relay for power circuit Safe standstill for power circuit
Option card	Encoder interface cards Extended I/O extension card Basic I/O extension card Multi-pump card Controller inside programmable card Communication card for Profibus DP V1 Communication card for Profibus DP Communication card for Modbus/Uni-Telway Communication card for Modbus TCP Communication card for Modbus Plus Communication card for METASYS N2 Communication card for LonWorks Communication card for Interbus-S Communication card for Fipio Communication card for Ethernet/IP Communication card for DeviceNet Communication card for CC-Link Communication card for BACnet Communication card for APOGEE FLN
Operating position	Vertical +/- 10 degree
Colour of enclosure	Light grey RAL 7035
Width	800 mm
Height	2162 mm
Depth	642 mm
Product weight	485 kg

Environment	
Electromagnetic compatibility	Voltage dips and interruptions immunity test conforming to IEC 61000-4-11
	Radiated radio-frequency electromagnetic field immunity test level 3 conforming
	to IEC 61000-4-3
	Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2
	Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4
	Conducted radio-frequency immunity test level 3 conforming to IEC $61000-4-6$
$1.2 / 50 ~ \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5	

Product data sheet

ATV61EXC2C31N4

Dimensions Drawings

IP 23 Floor-Standing Enclosure Compact Version

Standard Compact Floor-Standing Enclosure

Standard Compact Floor-Standing Enclosure + Additional Floor-Standing Enclosures, According to the Configuration

(1) Seal. For each floor-standing enclosure added, allow a $4 \mathrm{~mm} / 0.15 \mathrm{in}$. space for the seal.
(2) Standard IP 23 compact version floor-standing enclosure.

NOTE: The position of the enclosures must be complied with during installation. The number of additional enclosures can vary according to the chosen configuration.

Options	a	a1	a2	a3	a4
With or without common options or options (6) dependent on the drive rating	$816 \mathrm{~mm} / 32.1 \mathrm{in}$.	-	-	-	$816 \mathrm{~mm} / 32.1 \mathrm{in}$.
Cable entry via the top option (4)	$808 \mathrm{~mm} / 31.8 \mathrm{in}$.	-	$408 \mathrm{~mm} / 16 \mathrm{in}$.	-	$1220 \mathrm{~mm} / 48 \mathrm{in}$.
Sinus filter option	$808 \mathrm{~mm} / 31.8 \mathrm{in}$.	-	-	$608 \mathrm{~mm} / 23.9 \mathrm{in}$.	$1420 \mathrm{~mm} / 55.9 \mathrm{in}$.
(3) Except sinus filter option, which requires an additional enclosure. The sinus filter option is not compatible with the cable entry via the					
(4) The cable entry via the top option is not compatible with the sinus filter option.					

Wiring Diagram

A1 Drive
A2 Enclosure
F1 Fast-acting semi-conductor fuse
IL1 Line choke
Q1 Switch
(1) Fault relay contacts. For remote signalling of drive status.

Product data sheet

ATV61EXC2C31N4

Derating Curves

The derating curves for the drive nominal current (In) are dependent on the temperature and switching frequency. For intermediate temperatures, interpolate between 2 curves.
NOTE: The drive will reduce the switching frequency automatically in the event of excessive temperature rise.
$1 / n(\%)$

X Switching frequency (kHz)
NOTE: The temperatures shown correspond to the temperature of the air entering the enclosure.

