ATV61E5D75N4

variable speed drive ATV61-75kW 100HP -
380...480V - EMC filter - IP54

Range of product	Altivar 61
Product or component type	Variable speed drive
Product specific application	Pumping and ventilation machine
Component name	ATV61
Motor power kW	75 kW
Motor power hp	100 hp
Power supply voltage	380... 480 V (-15... 10 \%)
Supply number of phases	3 phases
Line current	$\begin{aligned} & \text { 140.3 A for } 380 \mathrm{~V} \\ & \text { 113.8 A for } 480 \mathrm{~V} \end{aligned}$
EMC filter	Class C2 EMC filter integrated
Assembly style	Enclosed with Vario switch disconnector
Apparent power	92.3 kVA for 380 V
Maximum prospective line Isc	35 kA
Maximum transient current	150.7 A for 60 s
Nominal switching frequency	4 kHz
Switching frequency	$8 . .16 \mathrm{kHz}$ with derating factor 2... 16 kHz adjustable
Asynchronous motor control	Voltage/Frequency ratio, 2 points Voltage/Frequency ratio, 5 points Flux vector control without sensor, standard Voltage/Frequency ratio - Energy Saving, quadratic U/f
Synchronous motor control profile	Vector control without sensor, standard
Communication port protocol	CANopen Modbus
Type of polarization	No impedance for Modbus
Option card	Profibus DP V1 communication card Profibus DP communication card Multi-pump card Modbus/Uni-Telway communication card Modbus TCP communication card Modbus Plus communication card METASYS N2 communication card LonWorks communication card Interbus-S communication card I/O extension card Fipio communication card Ethernet/IP communication card DeviceNet communication card Controller inside programmable card CC-Link communication card BACnet communication card APOGEE FLN communication card

Complementary

Product destination	Asynchronous motors Synchronous motors
Power supply voltage limits	323...528 V
Power supply frequency	$50 \ldots 60 \mathrm{~Hz}(-5 . . .5$ \%)
Power supply frequency limits	47.5... 63 Hz
Continuous output current	137 A at $4 \mathrm{kHz}, 380 \mathrm{~V}$ 124 A at $4 \mathrm{kHz}, 460 \mathrm{~V}$
Speed drive output frequency	0.5.. 500 Hz
Speed range	1... 100 in open-loop mode, without speed feedback
Speed accuracy	+/-10 \% of nominal slip for 0.2 Tn to Tn torque variation without speed feedback
Torque accuracy	+/-15 \% in open-loop mode, without speed feedback
Transient overtorque	130% of nominal motor torque, +/- 10% for 60 s
Braking torque	30 \% without braking resistor <= 125 \% with braking resistor
Regulation loop	Frequency PI regulator
Motor slip compensation	Adjustable Automatic whatever the load Can be suppressed Not available in voltage/frequency ratio (2 or 5 points)
Diagnostic	1 LED red presence of drive voltage
Output voltage	<= power supply voltage
Electrical isolation	Between power and control terminals
Type of cable for mounting in an enclosure	Without mounting kit : 1-strand IEC cable at $45^{\circ} \mathrm{C}$, copper $90^{\circ} \mathrm{C}$ XLPE/EPR Without mounting kit : 1-strand IEC cable at $45^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C}$ PVC With UL Type 1 kit : 3-strand UL 508 cable at $40^{\circ} \mathrm{C}$, copper $75^{\circ} \mathrm{C}$ PVC With an IP21 or an IP31 kit : 3-strand IEC cable at $40^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C}$ PVC
Electrical connection	U/T1, V/T2, W/T3, PC/-, PO, PA/+, PA, PB terminal $150 \mathrm{~mm}^{2}$ (300 kcmil kcmil) L1/R, L2/S, L3/T terminal $95 \mathrm{~mm}^{2}$ / AWG AWG 4/0 Al1-/AI1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR terminal 2.5 mm^{2} / AWG AWG 14
Tightening torque	U/T1, V/T2, W/T3, PC/-, PO, PA/+, PA, PB 41 N.m / 360 lb.in L1/R, L2/S, L3/T 22.6 N.m / $200 \mathrm{lb} . \mathrm{in}$ Al1-/Al1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR 0.6 N.m
Supply	External supply 24 V DC (19... 30 V) Internal supply for reference potentiometer (1 to 10 kOhm) 10.5 V DC +/- 5%, <= 10 mA for overload and short-circuit protection Internal supply 24 V DC ($21 . . .27 \mathrm{~V}$), <= 200 mA for overload and short-circuit protection
Analogue input number	2
Analogue input type	Al2 software-configurable voltage $0 . . .10 \mathrm{~V}$ DC, input voltage 24 V max, impedance 30000 Ohm, resolution 11 bits Al2 software-configurable current $0 \ldots 20 \mathrm{~mA}$, impedance 242 Ohm, resolution 11 bits Al1-/Al1+ bipolar differential voltage +/- 10 V DC, input voltage 24 V max, resolution 11 bits + sign
Sampling time	Discrete input LI6 (if configured as logic input) $2 \mathrm{~ms},+/-0.5 \mathrm{~ms}$ Discrete input LI1...LI5 $2 \mathrm{~ms},+/-0.5 \mathrm{~ms}$ Analog output AO1 $2 \mathrm{~ms},+/-0.5 \mathrm{~ms}$ Analog input Al2 $2 \mathrm{~ms},+/-0.5 \mathrm{~ms}$ Analog input Al1-/Al1+ $2 \mathrm{~ms},+/-0.5 \mathrm{~ms}$
Absolute accuracy precision	AO1 +/- 0.6% for a temperature variation $60^{\circ} \mathrm{C}$ $\mathrm{Al} 2+/-0.6 \%$ for a temperature variation $60^{\circ} \mathrm{C}$ AI1-/AI1+ +/- 0.6% for a temperature variation $60^{\circ} \mathrm{C}$
Linearity error	AO1 +/- 0.2 \% AI2 +/- 0.15% of maximum value Al1-/Al1+ +/- 0.15 \% of maximum value
Analogue output number	1
Analogue output type	AO1 software-configurable voltage, analogue output range $0 . . .10 \mathrm{~V} \mathrm{DC}$, impedance 470 Ohm, resolution 10 bits AO1 software-configurable current, analogue output range $0 \ldots 20 \mathrm{~mA}$, impedance 500 Ohm, resolution 10 bits AO1 software-configurable logic output $10 \mathrm{~V},<=20 \mathrm{~mA}$
Discrete output number	2

Discrete output type	(R2A, R2B) configurable relay logic NO, electrical durability 100000 cycles (R1A, R1B, R1C) configurable relay logic NO/NC, electrical durability 100000 cycles
Maximum response time	R2A, R2B <= 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ R1A, R1B, R1C <= 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ <= 100 ms in STO (Safe Torque Off)
Minimum switching current	Configurable relay logic 3 mA at 24 V DC
Maximum switching current	R1, $R 2$ on resistive load, 5 A at $30 \mathrm{VDC}, \cos$ phi $=1, \mathrm{~L} / \mathrm{R}=0 \mathrm{~ms}$ $R 1, R 2$ on resistive load, 5 A at $250 \mathrm{VAC}, \cos p h i=1, L / R=0 \mathrm{~ms}$ $R 1, R 2$ on inductive load, 2 A at $30 \mathrm{VDC}, \cos \mathrm{phi}=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$ $\mathrm{R} 1, \mathrm{R} 2$ on inductive load, 2 A at $250 \mathrm{VAC}, \cos$ phi $=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$
Discrete input number	7
Discrete input type	(PWR) safety input, 24 V DC, voltage limits <= 30 V , impedance 1500 Ohm (LI6) switch-configurable PTC probe, $0 . . .6$ probes, impedance 1500 Ohm (LI6) switch-configurable, 24 VDC , voltage limits $<=30 \mathrm{~V}$, with level 1 PLC, impedance 3500 Ohm (LI1...LI5) programmable, 24 V DC, voltage limits $<=30 \mathrm{~V}$, with level 1 PLC, impedance 3500 Ohm
Discrete input logic	LI6 (if configured as logic input) positive logic (source), < 5 V (state 0), $>11 \mathrm{~V}$ (state 1) LI6 (if configured as logic input) negative logic (sink), > 16 V (state 0), < 10 V (state 1) LI1...LI5 positive logic (source), < 5 V (state 0), > 11 V (state 1) LI1...LI5 negative logic (sink), > 16 V (state 0), < 10 V (state 1)
Acceleration and deceleration ramps	Automatic adaptation of ramp if braking capacity exceeded, by using resistor Linear adjustable separately from 0.01 to 9000 s S, U or customized
Braking to standstill	By DC injection
Protection type	Motor thermal protection Motor power removal Motor motor phase break Drive thermal protection Drive short-circuit between motor phases Drive power removal Drive overvoltages on the DC bus Drive overheating protection Drive overcurrent between output phases and earth Drive line supply undervoltage Drive line supply overvoltage Drive input phase breaks Drive break on the control circuit Drive against input phase loss Drive against exceeding limit speed
Insulation resistance	$>1 \mathrm{mOhm}$ at 500 V DC for 1 minute to earth
Frequency resolution	Display unit 0.1 Hz Analog input $0.024 / 50 \mathrm{~Hz}$
Type of connector	Male SUB-D 9 on RJ45 for CANopen on terminal 1 RJ45 for Modbus on front face
Physical interface	2-wire RS 485 for Modbus
Transmission frame	RTU for Modbus
Transmission rate	$20 \mathrm{kbps}, 50 \mathrm{kbps}, 125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}, 1 \mathrm{Mbps}$ for CANopen 9600 bps, 19200 bps for Modbus on front face $4800 \mathrm{bps}, 9600 \mathrm{bps}, 19200 \mathrm{bps}, 38.4 \mathrm{Kbps}$ for Modbus on terminal
Data format	8 bits, odd even or no configurable parity for Modbus on terminal 8 bits, 1 stop, even parity for Modbus on front face
Number of addresses	1... 247 for Modbus 1... 127 for CANopen
Method of access	Slave for CANopen
Marking	CE
Operating position	Vertical +/-10 degree
Width	362 mm
Height	1000 mm
Depth	404 mm
Product weight	84.4 kg

Product data sheet

ATV61E5D75N4

Dimensions Drawings

UL Type 12/IP 54 Drives with Vario

Dimensions

(1) The diameters and positions of the drill holes for mounting control and/or signalling units must be complied with. The customer is responsible for drilling and mounting units.
Dimensions in mm

a	a1	a2	b	b1	c	c1	G	H	K	Ø	Ø1
362	102	30	1000	280	404	364	300	975	10	9	22.3

Dimensions in in.

a	a1	a2	b	b1	c	c1	G	H	K	\varnothing	Ø1
14.25	4.01	1.18	39.37	11.02	15.91	14.33	11.81	38.39	0.39	0.39	0.87

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.Install the unit vertically:

- Avoid placing it close to heating elements
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

Clearance

Mounting

Three-Phase Power Supply with Upstream Breaking via Contactor

A1 ATV61 drive
KM1 Contactor
L1 DC choke
Q1 Circuit-breaker
Q2 GV2 L rated at twice the nominal primary current of T1
Q3 GB2CB05
S1, XB4 B or XB5 A pushbuttons
S2
T1 100 VA transformer 220 V secondary
(1) Line choke (three-phase); mandatory for ATV61HC11Y...HC80Y drives (except when a special transformer is used (12-pulse)).
(2) For ATV61HC50N4, ATV61HC63N4 and ATV61HC50Y...HC80Y drives, refer to the power terminal connections diagram.
(3) Fault relay contacts. Used for remote signalling of the drive status.
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(5) There is no PO terminal on ATV61HC11Y...HC80Y drives.
(6) Optional DC choke for ATV61H•••M3, ATV61HD11M3X...HD45M3X and ATV61H075N4...HD75N4 drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV61HD55M3X...HD90M3X, ATV61HD90N4...HC63N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. For ATV61W $\cdots \cdot N 4$ and ATV61W $\cdots \cdot N 4 C$ drives, the DC choke is integrated.
(7) Software-configurable current ($0 \ldots 20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(8) Reference potentiometer.

NOTE: All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Three-Phase Power Supply with Downstream Breaking via Switch Disconnector

A1 ATV61 drive
L1 DC choke
Q1 Circuit-breaker
Q2 Switch disconnector (Vario)
(1) Line choke (three-phase), mandatory for ATV61HC11Y...HC80Y drives (except when a special transformer is used (12-pulse)).
(2) For ATV61HC50N4, ATV61HC63N4 and ATV61HC50Y...HC80Y drives, refer to the power terminal connections diagram.
(3) Fault relay contacts. Used for remote signalling of the drive status.
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(5) There is no PO terminal on ATV61HC11Y...HC80Y drives.
(6) Optional DC choke for ATV61H•••M3, ATV61HD11M3X...HD45M3X and ATV61H075N4...HD75N4 drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV61HD55M3X...HD90M3X, ATV61HD90N4...HC63N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. For ATV61W $\cdot \bullet \cdot \mathrm{N} 4$ and ATV61W $\cdot \bullet \mathrm{N} 4 \mathrm{C}$ drives, the DC choke is integrated.
(7) Software-configurable current ($0 \ldots 20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(8) Reference potentiometer.

NOTE: All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 0 According to IEC/EN 60204-1

A1 ATV61 drive
A2 Preventa XPS AC safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal" function for several drives on the same machine. In this case, each drive must connect its PWR terminal to its +24 V via the safety contacts on the XPS AC module. These contacts are independent for each drive.
F1 Fuse
L1 DC choke
Q1 Circuit-breaker
S1 Emergency stop button with 2 contacts
S2 XB4 B or XB5 A pushbutton
(1) Power supply: 24 Vdc or Vac, 115 Vac, 230 Vac.
(2) S2: resets XPS AC module on power-up or after an emergency stop. ESC can be used to set external starting conditions.
(3) Requests freewheel stopping of the movement and activates the "Power Removal" safety function.
(4) Line choke (three-phase), mandatory for and ATV61HC11Y...HC80Y drives (except when a special transformer is used (12-pulse)).
(5) The logic output can be used to signal that the machine is in a safe stop state.
(6) For ATV61HC50N4, ATV61HC63N4 and ATV61HC50Y...HC80Y drives, refer to the power terminal connections diagram.
(7) Fault relay contacts. Used for remote signalling of the drive status.
(8) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(9) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter $2.54 \mathrm{~mm} / 0.09 \mathrm{in}$., maximum length $15 \mathrm{~m} / 49.21 \mathrm{ft}$. The cable shielding must be earthed.
(10) There is no PO terminal on ATV61HC11Y...HC80Y drives.
(11) Optional DC choke for ATV61H \cdots M3, ATV61HD11M3X...HD45M3X and ATV61H075N4...HD75N4 drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV61HD55M3X...HD90M3X, ATV61HD90N4...HC63N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. For ATV61W $\cdots \cdot N 4$ and ATV61W $\cdot \bullet N 4 C$ drives, the DC choke is integrated.
(12) Software-configurable current $(0 \ldots 20 \mathrm{~mA})$ or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(13) Reference potentiometer.

NOTE: All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Three-Phase Power Supply, High Inertia Machine

A1 ATV61 drive
A2 Preventa XPS ATE safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal"
(5) safety function for several drives on the same machine. In this case the time delay must be adjusted on the drive controlling the motor that requires the longest stopping time. In addition, each drive must connect its PWR terminal to its +24 V via the safety contacts on the XPS ATE module. These contacts are independent for each drive.
F1 Fuse
L1 DC choke
Q1 Circuit-breaker
S1 Emergency stop button with 2 contacts
S2 XB4 B or XB5 A pushbutton
(1) Power supply: 24 Vdc or Vac, $115 \mathrm{Vac}, 230 \mathrm{Vac}$.
(2) Requests controlled stopping of the movement and activates the "Power Removal" safety function.
(3) Line choke (three-phase), mandatory for ATV61HC11Y...HC80Y drives (except when a special transformer is used (12-pulse)).
(4) S2: resets XPS ATE module on power-up or after an emergency stop. ESC can be used to set external starting conditions.
(5) The logic output can be used to signal that the machine is in a safe state.
(6) For stopping times requiring more than 30 seconds in category 1, use a Preventa XPS AV safety module which can provide a maximum time delay of 300 seconds.
(7) For ATV61HC50N4, ATV61HC63N4 and ATV61HC50Y...HC80Y drives, refer to the power terminal connections diagram.
(8) Fault relay contacts. Used for remote signalling of the drive status.
(9) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(10) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter $2.54 \mathrm{~mm} / 0.09$ in., maximum length $15 \mathrm{~m} / 49.21 \mathrm{ft}$. The cable shielding must be earthed.
(11) Logic inputs LI1 and LI2 must be assigned to the direction of rotation: LI1 in the forward direction and LI2 in the reverse direction.
(12) There is no PO terminal on ATV61HC11Y...HC80Y drives.
(13) Optional DC choke for ATV61H•••M3, ATV61HD11M3X...HD45M3X and ATV61H075N4...HD75N4 drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV61HD55M3X...HD90M3X, ATV61HD90N4...HC63N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. For ATV61W $\cdot \cdots N 4$ and ATV61W $\cdot \bullet N 4 C$ drives, the DC choke is integrated.
(14) Software-configurable current ($0 \ldots 20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(15) Reference potentiometer.

NOTE: All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Product data sheet

ATV61E5D75N4

Performance Curves

Derating Curves

The derating curves for the drive nominal current (In) depend on the temperature and the switching frequency. For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}$), interpolate between 2 curves.
$1 / \ln (\%)$

X Switching frequency

